Một số bất đẳng thức đã được chứng minh thường sử dụng để để giải các bài tập BĐT cơ bản và nâng cấp trong chương trình Toán THCS.

Bạn đang xem: Bất đẳng thức nâng cao

Bất đẳng thức vào chương trình Toán trung học cơ sở lớp (6, 7, 8, 9) là một dạng toán hay và khó. Các bài tập chứng minh BĐT thường là bài bác cuối cùng trong các đề thi để phân loại học sinh, vấn đề chứng minh bất đẳng thức trung học cơ sở thi học sinh giỏi cấp quận (huyện), tỉnh, thành phố.

Bất đẳng thức trung học cơ sở cơ bản và nâng cao

Các bất đẳng thức cấp 2 thường dùng là:

1. Bất đẳng thức AM-GM (Arithmetic Means – Geometric Means):

Với những bộ số

*
ko âm ta có:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Ta gồm 3 dạng thường gặp của bđt này là.

Xem thêm: Thế Nào Là Tỉ Số Của Hai Số Hữu Tỉ Cho Ví Dụ ? Thế Nào Là Tỉ Số Giữa 2 Số Hữu Tỉ

Dạng 1:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Dạng 2:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="18" width="270" style="vertical-align: -5px;">

Dạng 3:

*

Dấu “=” xảy ra khi

*

Đối với BĐT này ta cần thành thạo kĩ thuật sử dụng bđt AM-GM mang lại 2 số và 3 số

2. Bất đẳng thức Cauchy-Schwarz (Bunyakovsky)

Dạng tổng quát: đến là 2n số thực tùy ý lúc đó

Dạng 1:

*
(1)

Dạng 2:

*
(2)

Dạng 3:

*
(3)

Dấu “=” xảy ra ở (1)(2)

*

Dấu “=” xảy ra ở (3)

*

Quy ước mẫu bằng 0 thì tử bằng 0

3. Bất đẳng thức Cauchy-Schwarz dạng Engel giỏi còn gọi là BĐT Schwarz

Cho là những số >0

Ta có:

*

Dấu “=” xảy ra khi

*

4. Bất đẳng thức Chebyshev (Trê- bư-sép)

Dạng tổng quát lác Nếu

*

Hoặc

*

Dạng 1:

*

Dạng 2:

*

Nếu

*

hoặc

*

Dạng 1:

*

Dạng 2:

*

Bất đẳng thức Chebyshev ko được sử dụng trực tiếp nhưng mà phải chứng minh lại bằng phương pháp xét hiệu

Bất đẳng thức Chebyshev mang lại dãy số sắp thứ tự, do đó nếu các số chưa sắp thứ tự ta phải giả sử gồm quan hệ thứ tự giữa những số.

5. Bất đẳng thức Bernoulli

Với

*
-1;rge 1vee rle 0Rightarrow (1+x)^rge 1+rx" title="Rendered by QuickLaTeX.com" height="19" width="328" style="vertical-align: -5px;">

Nếu

*
r>0" title="Rendered by QuickLaTeX.com" height="14" width="73" style="vertical-align: -2px;"> thì
*

Bất đẳng thức này còn có thể chứng minh bằng phương pháp quy nạp hoặc sử dụng BĐT AM-GM

6. Bất đẳng thức Netbitt

Ở đây mình chỉ nêu dạng thường dùng

Với x,y,z là những số thực >0

Bất đẳng thức Netbitt 3 biến:

*

Dấu “=” xảy ra lúc x=y=z>0

BĐT Netbitt 4 biến:

*

Dấu “=” xảy ra khi a=b=c=d>0

7. Bất đẳng thức mức độ vừa phải cộng – vừa phải điều hòa AM-HM (Arithmetic Means – Hamonic Means)

Nếu

*
là những số thực dương thì

*

Dấu “=” xảy ra lúc

*

8. Bất đẳng thức Schur

Dạng thường gặp

Cho a,b,c là những số ko âm

*

*
với r là số thực dương

Đẳng thức xảy ra lúc a=b=c hoặc a=0 với b=c và những hoán vị

9. Bất đẳng thức chứa dấu giá bán trị tuyệt đối

Với mọi số thực x,y ta có

*

Đẳng thức xảy ra lúc x,y cùng dấu hay

*

Với mọi số thực x,y ta có

*

Dấu “=” xảy ra khi với chỉ khi

*

10. Bất đẳng thức Mincopxki

Với 2 bộ n số

*
*
thì :

Dạng 1:

*

Dạng 2: mang lại x,y,z,a,b,c là các số dương ta có

*
a b c+sqrt<4>x y z leq sqrt<4>(a+x)(b+y)(c+z) sqrta c+sqrtb d leq sqrt(a+b)(c+d)" title="Rendered by QuickLaTeX.com" height="22" width="538" style="vertical-align: -6px;">